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Abstract. A model for the Linear and quadratic coupling of an anharmonic optical 
phonon branch producing a structural p h e  transition at T = To with a band of 
free electrcnn has been treated within an extended Enashberg theory. The quadratic 
coupling a w e s  a criticd behaviour of T,(To) as T, -+ To due to a renormalization 
of the linear coupling constant by a non-vanishing lattice order parameter for T < 
To. The parameter of the isotope effect 01 shows em unusual behaviour. Zero or 
even negative values of o( are obtained if the superwnducting transition is near the 
structural one. 

1. Introduction 

Up to now there has been no complete theoretical study on the influence of anhar- 
monicity in the lattice potentials on the superconducting transition temperature T, 
and the isotope effect for electron-phonon-interaction-driven superconductivity. Prob- 
lems appear in defining and evaluating the elementary excitations of lattices which 
are characterized by large thermal amplitudes of ionic vibrations and hence by strong 
anharmonicity. The effect of anharmonicity can be discussed on the basis of the 
following on-site potential for a local normal coordinate Q of some lattice mode: 
V(Q) = aQZ + bQ4. Two cases have to be considered. 

If a > 0 then the anhatmonicity becomes significant only for high enough tem- 
peratures that a/b 5 (Q’) holds. Then the temperature dependence of the phonon 
frequencies and of the phonon lifetime (see [I]) can cause a substantial temperature 
dependence of the Eliashberg function. For low enough temperatures a perturbation 
approach works. As was shown in [2] the excitation spectra and consequently the 
superconducting properties will be changed only slightly compared with the case of 
harmonic phonons. However, the effect of phonon scattering (line broadening) will 
reduce Tc, as was demonstrated in [3]. If the parameter a becomes negative we get 
a double-well potential. In such a case the lattice system can exhibit a structural 
phase transition (SPT) [4]. The influence of this on the superconductivity was anal- 
ysed in [5]. There it was assumed that the sum of stabilizing long range forces exceeds 
the local harmonic instability a. At the SPT point To the excitation energies of the 
lattice under consideration go to zero. This soft mode behaviour leads to a strong 
correlation of T, and To. The maximum value of T ,  is reached if the lattice is most 
unstable, i.e. if the lattice parameters lead to a SPT temperature which is equal to T,. 
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The second consequence of a soft mode is a strong variation of the isotope effect of T,. 
For a certain parameter range the isotope effect becomes very small or even negative. 
Another interesting case was discussed several years ago in [SI. Here the motion in 
the double-well potential is considered for the strong low-temperature quantum case 
of coupled two-level systems. A remarkable increase of T, due to the large thermal 
fluctuations of the lattice motion was found. The isotope effect for such a model was 
investigated in [q and positive or negative values depending on A were found. 

As we are dealing with lattices showing large thermal amplitudes of ions due to 
anharmonic motions i t  is certainly necessary to take into account electron-lattice 
coupling not only linearly in the displacements but at least also quadratically. The 
influence of non-linear coupling was already discussed in [3] and [8]. There are two 
effects. For small fluctuations [3] i t  was shown that the coupling constant X is reduced 
due to the Debye-Waller factor. For strong fluctuations, however, an increase of 
T, was predicted by [SI. Considering certain modes such as the tilting mode in the 
La&uO, system, the electron-lattice coupling quadratic in the displacements plays 
the central role, as the linear coupling term is absent for resons of symmetry (see [SI). 
A different approach to the effect of anharmonicity on superconductivity was  discussed 
in the series of papers [lo], 1111, [12]. A double-shell model, e.g. for the oxygen ions, 
with coupled double-well potentials combines the ferroelectric instability due to an 
anharmonic electron-phonon interaction with an electronic instability. As regards 
dependence on the model parameters, either a transition into a ferroelectric or into a 
superconducting state can be described within a self-consistent phonon approximation. 
The isotope effect of T, was found to be much smaller than for the BCS theory. 

The aim of this paper is to reconsider the influence of modes which are of special 
symmetry and connected with some kind of lattice instability. This will be done in 
a schematic model (section 2). For this model the Eliashberg theory is developed 
(section 3), the lattice properties including the two-phonon Green function are calcu- 
lated (section 4) and the results are compared with previous ones without quadratic 
coupling (section 5). 

2. The model and Eliashberg theory for h e a r  and quadratic coupling 

As we are interested in  discussing the general features of the influence of anharmonicity 
on the superconductivity we will treat a schematic model and do not claim to describe 
any specific experimental situation in high-T, materials. However, for numerical esti- 
mations we use parameters typical for high-T, superconductors. The model has the 
following form: 

H = He, + Hint + H,attice (2.1) 

where He, describes a simple band in Wannier representation: 

He, = ct i jc , f .cjm. 
ijo 

Hlattice stands for the lattice subsystem containing only one vibration branch causing 
a SPT: 
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For the interaction of the lattice vibrations with the electron band we take into account 
linear and quadratic coupling in a simple form: 

For a convenient treatment the Hamiltonian (2.1) was rewritten in the Nambu 
matrix formalism (see e.g. [13]) 

where ci +, ci are electron vector operators: 

The ri(i = 0, 1, 2, 3) are the Pauli matrices. The one-electron matrix Green function 

(with ( (A(t)[B(t‘)))  = -iO(t - t ’ ) ( [ A ( t ) ,  B(t’)]*), (. . .) indicating thermodynamical 
averaging, and A ( t )  Heisenberg representation of the operatpr A)-is ca!cu!ated with 
the equation of motion method. This leads to  an equation G = Go + GoPG, where 
the zeroth-order GF is given by 

&(U) = (UTo - z,r3’3)-l 

ui = li - ( I ; )  13,=p+2q(zJ t , = ( q ) .  (2.8) 

Z, = t ,  + & ( I J  + q(uf) 

The renormalization of the linear electron-phonon coupling constant p in (2.8) due 
to non-vanishing static displacements becomes significant if the lattice undergoes a 
SPT, since (xi) is temperature dependent (see section 3 and figure 2). In the case of 
vanishing electron-phonon coupling (isolated lattice) two solutions with (2;) = rtl(q)l  
can appear at the SPT. Switching on the electron-phonon coupling, the eigenvalues 
en of the Hamiltonian (2.1) exhibit the symmetry zn(zi) = cn(-xi) in a perturbation 
approach if the high-symmetry phase is assumed. However, this symmetry is broken if 
the SPT is reached and q # 0 is assumed, since different p (see (2.8)) lead to  different 
reductions of the cn within the conventional perturbation approach, i.e. larger 6 cause 
lower 6”. Thus larger pvalues are favoured. 

For the polarization operator p the following expression is valid: 

pij(u) = r, (fi2((ciuilc~uj)) + qz((ci6u,”lc;6u~))) r3 Suf = uf - (U,”). (2.9) 

The Dyson equation G = do + G0uG provides the relation between p and the mass 
operator A? of the electron GF: 

u = P(l +PG,)-’ = Iji,, (2.10) 
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The superscript ‘irr’ denotes the irreducible part (with respect to Go) of the GF under 
consideration. Decoupling electron and phonon variables in M an expression can be 
found which coincides with the corresponding formula in the usual Eliashberg theory 
with the only difference that beside the one-phonon GF Dji ) (w)  = ((uiiuj)) we have 
the twc-phonon GF D$’(w) = ((u~iu~}}. Consequently the apparatus of the Eliashberg 
theory has been applied in the usual manner. For the Eliashberg function o Z F ( w )  we 
get: 

where N(E,) is the electron density of states at the Fermi energy EF. To calculate 
T, we use a standard interpolation formula derived by Krezin [14]: 

(2.12) 

where the electron-phonon coupling constant A and the averaged phonon frequency 
Q are given by: 

m 

Q2 = 1 J dwo2F(w)w 
-m 

(2.13) 

(2.14) 

3. Treatment of the anharmonic lattice 

The lattice Hamiltonian describes a system with a SPT of both displacive and 
order-disorder type depending on the ratio A/Co where CO = Cij is the inte- 
grated interaction strength (see e.g. [15]). Here we are interested in a parameter range 
(A/C,  < 1) where aso-called soft mode behaviour occurs, i.e. where an optical phonon 
frequency uq(T) tends to zero for a certain wave vector pc as the SPT temperature To 
is reached (wqe(T = To) = 0) [4]. For T < To an order parameter q is involved. q is 
connected with static displacements of the ions (zi): 

(q) = qeiqh’Rs, (3.1) 

R, is the position vector of the ith elementary cell. For sake of simplicity we assume 
long range interaction forces Cij = Co/N (N = number of elementary cells) and hence 
q, = 0. This assumption does not change the general features of the phonon system 
which are essential for our consideration namely a soft mode behaviour and a SPT. To 
treat the anharmonicity z4 in Iflattice we use the standard Green function technique. 
The thermodynamical averages are carried out with Iflattice only, i.e. the features of the 
phonon system are calculated neglecting the electron-phonon interaction as is usually 
done in the framework of the Eliashberg theory [13]. To evaluate the phonon Green 
function D(’)(w) we use the self-consistent phonon approximation for the decoupling 
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of correlation functions of higher order which works well if A/Co < 1 (see [15]), i.e. in 
the parameter range of interest. This leads to the following coupled set of equations: 

nw' = A'+ CO - Cq 

A' = -A + 3B(uf) + 3Bq' 
P 

rl(-1+ rl' + 3 ( 4 ) )  = 0 

h 

The temperature of the SPT, To, is given by 

kT, = fi& 
2 f i  coth-' (w) ' 

(3.7) 

Within the same order of approximation (self-consistent phonons, i.e. non-interacting 
quasiparticles with temperature dependent energy) the tw.>-phonon GF can be ex- 
pressed in terms of the one-phonon OF: 

With the dispersion relation chosen above and inserting (3.2) and (3.6) we obtain 

4h(uf) 
D$'(w) = m(w2 - 4 w 3  6, j (3.9) 

with 

wz = A' +Co. (3.10) 

4. Numerical results and discussion 

With the information gained in the preceding section the Eliashberg function (cf. equa- 
tion (2.11)) is given 

(U'F(W) = - N(EF)bz (6(w - w o )  - S(w + wo))  + q'(u;) (S(w - Zw,) - 6(w + 2wo))]. 
-0 

(4.1) 
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Inserting this result into (2.13), (2.14) gives 

Because of the T-dependence of w o  and (U') (see equations (3.6), (3.10)) X and 'd 
become T-dependent ((4.2), (4.3)). To determine T, one has to solve (3.3), (3.5), 
(3.6), (2.12) self-consistently. 

In order to get reasonable values for the model parameters A, B, CO and m 
we consider the tetragonal-orthorhombic SPT in La,-,Sr,CuO,. This SPT is caused 
by the softening of the tilting mode (rigid rotations of Cu0,- octahedra) at the 
X point of the Brillouin zone (161. A microscopical model for this SPT was given 
in 1171, [18]. Plakida [19] transformed this model into a 4'-model (2.3). The Sr- 
doping z was expected to influence mainly the harmonic instability A due to changes 
of the ionic charges at La(Sr) positions and the appearance of free charge carriers [ l q ,  
[IS]. Since for z = 0 To(La,CuO,) = 530 K is measured [20] the high-temperature 
limit of equation (3.7) can be considered: To - A. From the experimental result 
To - (1  - 42) [20] it follows that A = Ao(l  - 41). An estimation of the model 
parameters was given in [5], 1171 using neutron scattering results: 

A 2 2  z3 0.09 A' B 
- x 60 me\'' m 

CO 
A0 
- z3 2.44 

The electron density of states was assumed as N ( & ,  = 1 eV-' [21], Note that 
generally z can be considered as a control parameter for shifting the SPT temperature 
To and thereby the correlations between To and T, can be studied. 

ow 
200 100 

T(K) 
Figure 1. Right-hand side of (2.12) as fundion 
of temperaturefor (a) purely linear coupling (p = 
1 eV A-'); (b) linear + quadratic coupling (p = 
1 eV A - 1 , q  = 0.5 eV A-*). 

Figure 2. Lattice order parameter q(T)  for r = 
0.1 (corresponds to To = 301 K). 
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The features of the above discussed model in the case p = 0 only linear electron- 
phonon coupling) were given in 151, where a pvalue of 1 eV I-' w, used. Bere 
we want to study additional effects of quadratic coupling (q  # 0). In a first step of 
solving our system of equations we determined F(T) for x = 0.1 and q = 0.5 eV A-' 
where F(T) is the right-hand side of (2.12) as a function of temperature (figure 1). 
For comparison we show our recent results €or q = 0 (cf. 151). The main influence 
of quadratic electron-phonon coupling in this parameter range is mediated by the 
renormalization of the linear term p due to the appearance of an order parameter 
q(T) (figure 2). While for q = 0 we got a maximum in F ( T )  at To due to the 
softening of the phonon frequency U,, at the SPT, now the rapid increasing of q below 
To ( q  - (To - T)'la) causes a drastic enlargement of F(T) below To. However, in 
the high-symmetry phase (q  = 0) the bare additional influence of quadratic electeon- 
phonon coupling (see (4.2), (4.3)) is negligibly small. This fact holds for q-values up 
to IO ev A-*. 

20 I p=1 
I 

Figure 3. Superconducting transition temperature T, as function of the control 
parameter I, which shifts the SPT temperature. for different quadratic coupling 
strengths p (in eV A-*). 

Now let us calculate TJx) by solving the self-consistent equation T = F(T).  The 
results are shown in figure 3. With increasing p the maximum in T,(+) shifts from the 
x-value where T,  = T,(p = 0) to x = 0 ( q  2 1 eV A-'). The critical behaviour ofT,(x) 
for x - xc is due to the fact that at zc the SPT appears and the critical behaviour of 
q(z) leads to a similar one of F(x) (see (2.8)). Thus for q = 0.5 eV A-2 a dependence 
can be reproduced where TJz) is nearly constant in the low-symmetry phase (1) f 0) 
and rapidly decreases as the high-symmetry phase ( q  = 0) is reached. The parameter 
of the isotope effect U = d(lnT,)/ d(1nm) exhibits suprising features within our model. 
To calculate the dependence of a on x for the above model parameters we determined 
T, for 0I6 and for the 01* oxygen isotope mass and then a according to the relation 

AT, m(0I6) 
U =  -- 

TC(Ol6) Am 
AT, = T,(O") - TJO") Am = m(0") - m(0I6). (4.7) 
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Figure 4. The parameter of the isotope effect o as a function of the control param- 
etw r for q = O(O) ,q  = 0.5eV A-*(A) and q = 1 eV A-*(*). 
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Figure 5. Shih of T, due to isotope -8 change, p = 1 eV A-' ,q  = 0.5 eV h-'. 

The a(z)-dependence is shown in figure 4. For p = Oa(r) shows a steplike decrease 
(T, = To) while a(.) is nearly independent of z for z < z, and z > I,. The value ofa is 
nearly the same as for BCS superconductors: 0.43 5 a 5 0.5. With increasing q strong 
deviations from the q = 0 case appear near zc if z < 2,. a decreases drastically for 
I -+ zc and even reaches negative values for strong enough quadratic coupling. This 
behaviour is a consequence of the dependence of T, on I ( see figure 5). For slightly 
enlarged isotope mass the T,(z)-curve shifts downward and to higher +-values. 

Let us discuss the results. The main effect of quadratic electron-phonon interaction 
on T, comes through the renormalization of the linear coupling term p due to non- 
vanishing static ion displacements. Such temperature dependent displacements occur 
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if the lattice undergoes a SPT. That means that the expansion of the electron hopping 
matrix elements in powers of the lattice displacements around the equilibrium positions 
of the ions lead to a temperature dependent linear electron-phonon matrix element p. 
Thus one has to be careful to use oZF(w)-data from experiments done at higher 
temperatures (e.g. room temperature) than T, or even To since the possible existence 
of a SPT can change the electron-phonon coupling crucially due to an increasing order 
parameter with lowering temperature. Especially in the case of high-temperature 
superconductors (T, 2 100 K) it seems to be possible that SPT at lower temperatures, 
i.e. in the superconducting state, can appear and cause a temperature dependent 
renormalization of the electron-phonon coupling. Then the temperature dependence 
of the superconducting gap and the critical magnetic field is changed and the ratio 
2A/kT,  becomes larger than the BCS-value. 

5. Summary 

In the present work we treated a simple model which describes free electrons coupled to 
anharmonic lattice vibrations linear and quadratic in the displacements. The lattice 
undergoes a structural phase transition at To with a soft mode behaviour. While 
with purely linear coupling the superconducting transition temperature TJT,) has its 
maximum if T, = To, non-vanishing quadratic coupling causes a critical 'behaviour of 
T,(T,) as T,  -t To. This is due to a strong renormalization of the linear coupling 
constant by the existence of an order parameter for T < To. At the same time the 
isotope effect rapidly decreases as T, -+ To and even zero or negative values are 
obtained. 
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